Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Mean-field control (MFC) problems aim to find the optimal policy to control massive populations of interacting agents. These problems are crucial in areas such as economics, physics, and biology. We consider the nonlocal setting, where the interactions between agents are governed by a suitable kernel. For N agents, the interaction cost has O(N2) complexity, which can be prohibitively slow to evaluate and differentiate when N is large. To this end, we propose an efficient primal-dual algorithm that utilizes basis expansions of the kernels. The basis expansions reduce the cost of computing the interactions, while the primal-dual methodology decouples the agents at the expense of solving for a moderate number of dual variables. We also demonstrate that our approach can further be structured in a multi-resolution manner, where we estimate optimal dual variables using a moderate N and solve decoupled trajectory optimization problems for large N. We illustrate the effectiveness of our method on an optimal control of 5000 interacting quadrotors.more » « lessFree, publicly-accessible full text available July 8, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            We study approximations to the Moreau envelope—and infimal convolutions more broadly—based on Laplace’s method, a classical tool in analysis which ties certain integrals to suprema of their integrands. We believe the connection between Laplace’s method and infimal convolutions is generally deserving of more attention in the study of optimization and partial differential equations, since it bears numerous potentially important applications, from proximal-type algorithms to Hamilton-Jacobi equations.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available November 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
